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Further Note on the Design of
Two-Dimensional Contracting Channels

B. SZCZENIOWSKI*

University of Montreal, Montreal, Quebec

IN connection with two recent notes on the subject by
Nanjunda Swamy,1' 2 the following remarks seem to be

opportune. Usually, in similar problems there are three
conditions to be fulfilled: 1) the velocity distribution along
the channel walls, as well as along any streamline comprised
between them, should be mono tonic; 2) the ratio of velocities
of flow before and after the contraction should be such as
arbitrarily assumed; and 3) the velocities in both the initial
and final cross sections of the channel should be uniform
(which condition may, in general, be fulfilled only at plus
and minus infinity, respectively). In the first of Nanjunda
Swamy's notes, the last condition is neither contemplated
nor fulfilled. In the second, it is fulfilled only inadvertently,
by assuming a particular (namely Tsien's) form of distribu-
tion of velocity along the channel axis; moreover, the second
solution is expressed in terms of an infinite series, which ap-
pears to be an unnecessary complication.

It should be noted that the solutions of the problem in
question, expressed in finite terms, have been published
before.3. 4 In Ref. 3, the well-known Helmholz potential
has been applied:

z/a = (Wh/aU) (1)
where Wh — fa + i\f/h is the complex potential, z = x + iy
is a complex variable, a is a linear parameter, U is a constant
velocity, and X is a nondimensional constant parameter.
With the assumption X = — e~l, this potential represents
the flow between the two parallel straight walls, y = ±7ra,
extending from x = 0 to x = °°, as well as outside these
walls, a part of streamlines turning to infinity in the positive
direction of the x axis. The velocity between the walls at
x = oo becomes uniform (= U) and parallel to the x axis,
whereas outside the walls it becomes nil for y = ±00 and/or
x = ±00 . Therefore, it is sufficient to superimpose the
uniform flow (Wo/aU) = nz/a, where /z is an arbitrary non-
dimensional constant, i.e., to assume the resultant potential
W=Wh+ W0, which yields

(JJL + l)(z/a) = (W/aU) - e-(*Vatf)-!+/*(*/«) (2)

in order to obtain a contracted flow, the velocity of which is
uniform at both the initial cross section (Ux=-m = >C7;
Vx*=-*> = 0) and the final cross section [Ux=00 = (/z + l)U;
vx=m = 0], the contraction ratio thus becoming (JJL + 1)/M-
It may be shown that on the x axis (\f/ = 0, y = 0) the ve-
locity varies monotonically from x = — <& to x = o°, the
same being true for streamlines | \f/\ > 0 up to the value

\f/i |, which may be found by computation. The value of
\f/ for the channel walls therefore must be \\f/w\ < | i//t\. The
smaller the value of \f/w chosen for the wall, the more slender
becomes the channel. The numerical solution for a chosen
value of \//w for the channel walls is obtainable by expressing
0 in function of y alone, and then x in function of </> and y.

In Ref. 4 (pp. 216 and 217), another solution is quoted in
detail for the particular case of an expansion ratio of two
to one:

62(W/aU) _|_ eW/aU = ez/a

which may be generalized, however, by assuming
) _|_ eW/aU = &z/a (3)

where jit is a nondimensional constant parameter, which may
have any positive value but should be greater than unity if
the actual contraction is to be obtained. A convenient
method for studying the extrema of total velocity and the in-
flection points of the streamlines may be found in Ref. 5.
Applied to Eq. (3), it yields the condition for having the ve-
locity varying monotonically: \f//aU < ir/2 for /z < 2;
(t/aU) < T/2(tJL - 1) for /* > 2.

Introduction of tanh functions to form other adequate
potential forms for contracted channels also might be useful.
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Comment on "A Second-Order Theory
of Entry Mechanics into a Planetary

Atmosphere"

KENNETH WANG*
Curtiss-Wright Corporation, Wood-Ridge, N. J.

IN a recent paper1 dealing with re-entry mechanics, Loh
claimed that the solution obtained by Wang and Ting2

"breaks down quickly after the initial position of the entry.'7
A careful examination of the forementioned solution indi-
cates the contrary. In fact, Eq. (13), which expresses the
velocity in terms of the atmospheric density, can be applied
easily to that portion of the trajectory after $ = 0 is reached.
By determining the atmospheric density at $ = 0 and ex-
tending the integration, one readily can obtain the similar
relation for the velocity. With the velocity at exit calculated,
the exit angle of inclination also can be obtained from Eq. (9)
by replacing entry velocity with the exit velocity.

Using these relations, the exit velocity Fexit/(^o)1/2 and
the exit angle of inclination $exit are found to be 0.986 and
10°32', respectively, for the numerical example presented in
Ref. 1 as Figs. 8c and 8d. They agree extremely well with
the numerical exact solution represented by the solid lines in
these figures and thus confirm the validity of these solutions
for the re-entry trajectory from entry to skip. For details of
derivation, see Ref. 3.
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